Примеры выполнения контрольной по математике

Несобственные интегралы.

Формула Ньютона-Лейбница для несобственного интеграла. В приведённых примерах мы сначала вычисляли с помощью первообразной функции определённый интеграл по конечному промежутку, а затем выполняли предельный переход. Объединим два этих действия в одной формуле. Символом   будем обозначать ; символом  - соответственно, ; тогда можно записать , , , подразумевая в каждом из этих случаев существование и конечность соответствующих пределов. Теперь решения примеров выглядят более просто:  - интеграл сходится;  - интеграл расходится.

Найти нули функции и определить их порядок: f (z) = 1+ch z.

Точка z0, принадлежащая области комплексных чисел, называется изолированной особой точкой функции f(z), если image288 (119 bytes) такая, что f(z) является однозначной аналитической функцией в image289 (198 bytes) (в самой точке аналитичность f(z) нарушается).

Найти все конечные особые точки функции image186 (384 bytes) .

Определить тип особой точки z = 0 для функции image197 (177 bytes) .

Найти все особые точки функции ,определить их тип. Ответ обосновать.

 Для несобственных интегралов применимы формулы интегрирования по частям и замены переменной: ; при замене переменной несобственный интеграл может преобразовываться в собственный. Так, например, вычислим интеграл: . Пусть  ; если , то ; если  то  Поэтому  (это уже собственный интеграл) = .

Признаки сравнения для неотрицательных функций. В этом разделе мы будем предполагать, что все подынтегральные функции неотрицательны на всей области определения. До сих пор мы определяли сходимость интеграла, вычисляя его: если существует конечный предел первообразной при соответствующем стремлении ( или ), то интеграл сходится, в противном случае - расходится. При решении практических задач, однако, важно в первую очередь установить сам факт сходимости, и только затем вычислять интеграл (к тому же первообразная часто не выражается через элементарные функции). Сформулируем и докажем ряд теорем, которые позволяют устанавливать сходимость и расходимость несобственных интегралов от неотрицательных функций, не вычисляя их.