Заказать  курсовую Заказать курсовую, контрольную, диплом

Стильные браслеты с уникальным дизайном

Продажа профессиональной косметики

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.
Дипломные и курсовые на заказ

Двойные интегралы в полярных координатах Двойные интегралы в произвольной области Двойные интегралы в прямоугольной области

Геометрические приложения двойных интегралов криволинейных интегралов ь поверхностных интегралов Несобственные интегралы Таблица интегралов. Интегрирование по частям Интегрирование гиперболических функций

Решение интегралов. Выполнение контрольного, курсового, типового расчета

Интегрирование по частям

Пусть u(x) и v(x) являются дифференцируемыми функциями. Дифференциал произведения функций u и v определяется формулой Проинтегрировав обе части этого выражения, получим или, переставляя члены,

Это и есть формула интегрирования по частям. Связь математической статистики с теорией вероятности

Пример Вычислить интеграл .

Решение. Используем формулу интегрирования по частям . Пусть . Тогда Следовательно,

Пример Проинтегрировать . Математика Задачи Комплексные числа

Решение. В соответствии с формулой интегрирования по частям полагаем u = ln x, dv = dx. Тогда . Получаем

  Пример.

 

.

  Теперь продифференцируем полученное выражение, умножим на  и сгруппируем коэффициенты при одинаковых степенях х.

=

=

 

Итого =

=

Вычислить интеграл .

Вывести формулу редукции (понижения степени) для .