Решение интегралов. Выполнение контрольного, курсового, типового расчета

Заказать  курсовую Заказать курсовую, контрольную, диплом

Продажа профессиональной косметики

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Студенческий файлообменник Студенческий файлообменник

Закажите реферат

Закажите реферат

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Изучение курса "Черчение"
Сопромат
Математика
Задачи типового расчета
Решение интегралов
Решение алгебраических и трансцендентных уравнений
Построение многочлена Лагранжа
Метод Симпсона
Метод наименьших квадратов
Методы решения систем линейных уравнений
Ручные вычисления по методу Гаусса
Компакт-метод
Метод равномерного поиска
Градиентный метод
Элементы математической статистики
Законы распределения случайных величин
Примеры выполнения контрольной по математике
Комплексные числа
Элементарные функции комплексного переменного
Дифференцируемость функции комплексной переменной
Числовые ряды с комплексными членами
Интегрирование функций комплексной переменной
Ряды Тейлора и Лорана
Изолированные особые точки аналитической функции
Нули аналитической функции
Вычисление вычетов
Вычислить интеграл
Применение интегральных формул Коши к вычислению интегралов.
Определение световой волны света с помощью дифракционной решетки
Атомная энергетика
Программа развития АЭС до 2050 г
Развитие ядерной индустрии в Китае
Ядерная программа Пакистана
Крупные аварии на АЭС
Ядерно-энергетические комплексы
Физические основы ядерной индустрии
Радиация проникающая
Оборудование РБМК 1000
Система компенсации давления
Конструкция регенеративного теплообменника
Насосные подпиточные агрегаты
Маслоохладители
Бассейн выдержки и перегрузки топлива
Система байпасной очистки
Технические хаpактеpистики pегулиpующего клапана

Вычисление объемов с помощью тройных интегралов

Метод замены переменной Рассмотрим неопределенный интеграл F(x) некоторой функции f(x). Для упрощения вычисления интеграла часто удобно выполнить замену переменной

Замена переменных в двойных интегралах

Аналитическая геометрия Эллипс Типовые расчеты (курсовые задания) по математике

Замена переменных в тройных интегралах

Определенный интеграл. Формула Ньютона-Лейбница. Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю

Замена переменной в определенном интеграле

Определение двойного интеграла Понятие интеграла может быть расширено на функции двух и большего числа переменных. Рассмотрим, например, функцию двух переменных z = f (x,y).

Производная сложной функции "Двухслойная" сложная функция записывается в виде где u = g(x) - внутренняя функция, являющаяся, в свою очередь, аргументом для внешней функции f.

Двойные интегралы в полярных координатах Одним из частных случаев замены переменных является переход из декартовой в полярную систему координат

Двойные интегралы в произвольной области

Двойные интегралы в прямоугольной области Пусть область интегрирования R представляет собой прямоугольник .

Геометрические приложения двойных интегралов

Геометрические приложения криволинейных интегралов Криволинейные интегралы имеют многочисленные приложения в математике, физике и прикладных расчетах. В частности, с их помощью вычисляются

  • Длина кривой;
  • Площадь области, ограниченной замкнутой кривой;
  • Объем тела, образованного вращением замкнутой кривой относительно некоторой оси.

Геометрические приложения поверхностных интегралов С помощью поверхностных интегралов вычисляются

  • Площадь поверхности;
  • Объем тела, ограниченного замкнутой поверхностью.

Несобственные интегралы Определенный интеграл называется несобственным интегралом, если выполняется, по крайней мере, одно из следующих условий:

  • Предел a или b (или оба предела) являются бесконечными;
  • Функция f (x) имеет одну или несколько точек разрыва внутри интервала [a,b].

Неопределенный интеграл и его свойства. Таблица интегралов.

Интегрирование по частям Пусть u(x) и v(x) являются дифференцируемыми функциями. Дифференциал произведения функций u и v определяется формулой Проинтегрировав обе части этого выражения, получим или, переставляя члены,

Интегрирование гиперболических функций