Сопромат Расчет многопролетных статически определимых балок Линии влияния внутренних усилий Расчет распорных систем Действительная работа внешних сил Правило П. Верещагина Основная система метода сил Уравнение трех моментов

Лекции по сопромату для студентов строительных специальностей

Канонические уравнения метода перемещений

В каждой условно введенной связи основной системы возникают реактивные усилия как от действия внешней нагрузки, так и от смещения связей. В заделках возникают реактивные моменты, а в линейных связях - реактивные усилия.

Условия эквивалентности заданной и основной систем в методе перемещений записывают в виде системы канонических уравнений

  (8.4)

Канонические уравнения метода перемещений (8.4) описывают реактивные усилия в условных связях и заделках основной системы как от перемещений этих связей и заделок, так и от заданной внешней нагрузки.

Физический смысл коэффициентов при неизвестных перемещениях Zi заключается в том, что rij представляет собой реактивное усилие в i-й условной заделке или связи в основной системе от перемещения j-й условной заделки или связи на единицу.

Физический смысл свободного члена RiF системы канонических уравнений метода перемещений заключается в том, что он представляет собой реактивное усилие в i-й условной связи или заделке от внешней нагрузки.

Равенство нулю каждого из уравнений означает, что в заданной системе нет ни заделок, ни связей, т.к. они являются условными.

Система канонических уравнений метода перемещений в матричной форме имеет следующий вид:

 , (8.5)

где   - матрица реакций;  - вектор реакций от внешней нагрузки; - вектор искомых перемещений.

В матрице реакций различают «главные» реакции , , …, , имеющие индексы i = j, и побочные реакции , , …,  и т.д., у которых .

     . (8.6)

«Главные» реакции всегда положительны. Побочные реакции могут иметь любой знак и обладают свойством взаимности, т.е. .

Матрица жёсткости  обладает рядом свойств:

определитель этой матрицы всегда положителен;

матрица  всегда симметрична относительно главной диагонали;

произведение двух «главных» реакций всегда больше квадрата соответствующего побочного перемещения .

Для определения значений элементов  матрицы реакций строят эпюры моментов  от перемещений  условных заделок и связей. На рис. 8.4 показаны такие эпюры, построенные для основной системы, изображённой на рис. 8.3. Значения ординат эпюр  взяты из прил. 2.

В строительной механике имеются два метода определения значений элементов   матрицы реакций: 1) кинематический, который основан на правиле П.Верещагина (аналогично определению перемещений) путём перемножения эпюр; 2) статический, использующий уравнения равновесия.

Наиболее рациональным методом определения реактивных усилий является статический метод. В соответствии с этим методом используют два уравнения статики - либо уравнение моментов, либо сумму проекций на ту или иную ось, например у, , сил, действующих на рассматриваемую часть основной системы метода перемещений.

Рассмотрим в качестве примера определение реактивных усилий  по эпюрам, показанным на рис. 8.4.

 

Z3=1

Для определения, например, реактивного усилия , которым является изгибающий момент в условной заделке 1 от поворота этой заделки на единицу, мысленно вырежем на эпюре   узел 1 (рис. 8.5, а). Реактивный момент направлен в сторону заданного перемещения Z1. Рассматривая равновесие этого узла, запишем  Þ .


Реактивное усилие представляет изгибающий момент, возникающий в условной заделке 1 от поворота условной заделки 2 на единицу.

 В соответствии с этим на эпюре мысленно вырежем узел 1 (см. рис. 8.5) и снова составим уравнение равновесия:

Þ .

Проводя аналогичные рассуждения, нетрудно найти реактивное усилие (см. рис. 8.5, в). В случае, если реактивным усилием является продольное усилие в условной связи (в данном случае это условная связь 3) уравнение равновесия представляет собой . Для того чтобы составить это уравнение на эпюре (эпюра ), построенной от линейного перемещения условной связи 3, мысленно делают сечение и рассматривают равновесие (рис. 8.5, г) оставшейся части рамы.

В рассматриваемом примере  Þ .

Для оценки правильности вычисления коэффициентов  строят суммарную единичную эпюру (см. рис. 8.4).

Произведение этой эпюры саму на себя должно давать сумму всех коэффициентов при неизвестных.

 .  (8.7)

В случае невыполнения равенства (8.7) проводят построчную проверку.

  ;

 ; (8.8) …………………………...

 .

Для определения свободных членов  системы канонических уравнений (8.4) метода перемещений в основной системе строят так называемую грузовую эпюру , показанную на рис. 8.6.

 При построении этой эпюры используют стандартные решения из прил. 3. Значения   находят, используя те же методы, которые используются для определения коэффициентов . Так, для определения значения реактивного усилия  мысленно вырезают узел 1, а усилия  - узел 2. Из уравнений равновесия находят соответственно  и . Реактивное усилие , которым в данной задаче является продольное усилие в условной связи 1, определяют, мысленно делая сечение на эпюре  по стойкам близко к ригелю. Из суммы проекций на горизонтальную ось можно найти .

 

 


Проверка правильности определения значений  осуществляется в соответствии с выражением

  , (8.9)

где   - эпюра изгибающих моментов (рис. 8.7) от внешней нагрузки, построенная в любой статически определяемой системе, являющейся основной системой метода сил рассчитываемой заданной системы.

Решение системы канонических уравнений и построение эпюр внутренних усилий

Найденные значения коэффициентов при неизвестных  и свободных членов подставляют в систему (8.4) канонических уравнений метода перемещений и решают любым известным в линейной алгебре способом.

В результате решения системы канонических уравнений метода перемещений находят значения Zi искомых перемещений. Нахождение искомых значений перемещений Zi означает, что заданная к расчёту (заданная система) стержневая конструкция становится кинематически определимой.

Все внутренние усилия, возникающие в поперечных сечениях стержней от найденных перемещений Zi и от заданной внешней нагрузки, могут быть в соответствии с принципом суперпозиции определены из выражения

 .  (8.10)

Необходимым контролем правильности построения эпюры М является условие равновесия изгибающих моментов в жёстких узлах рассчитываемой конструкции. В основной системе метода перемещений единичные и грузовая  эпюры являются неуравновешенными. Но единичные эпюры , будучи каждая умноженная на соответствующее ей перемещение Zi и сложенные друг с другом и грузовой эпюрой , обязательно должны в итоге давать эпюру моментов М с уравновешенными в жёстких узлах моментами. Отмеченное условие правильности построения итоговой эпюры моментов М является необходимым, но недостаточным. Достаточным условием правильности построения эпюры М является проведение деформационной проверки, суть которой изложена в разделе 6 настоящего курса. При этом не имеет значения, с использованием какого метода – метода сил или метода перемещений – построена итоговая эпюра моментов М. Поэтому для проведения деформационной проверки из заданной рассчитываемой системы выбирают любую основную систему метода сил, в которой строят любую эпюру моментов  от действия неизвестной силы . Соблюдение условия  свидетельствует о правильности построения эпюры М.

Построение эпюр поперечных Q и продольных N сил осуществляют точно так же, как это делается (см. раздел 6 настоящего курса) при решении статически неопределимых задач методом сил.

Линии влияния моментов для сечений, расположенных в пролётах неразрезной балки После построения линий влияния опорных моментов (раскрытие статической неопределимости системы) можно приступать к построению линий влияния внутренних усилий в сечениях неразрезной балки.

Линии влияния поперечных сил

Расчет статически неопределимых систем методом перемещений Основы метода Метод перемещений в строительной механике является во многом основополагающим для большинства современных методов (метод конечных элементов и др.) раскрытия статической неопределимости сложных стержневых конструкций.

Основы динамики стержневых систем В предыдущих разделах был рассмотрен расчёт стержневых систем при действии на них статических нагрузок. Однако в практике создания и эксплуатации транспортных сооружений большинство нагрузок являются такими, которые во времени изменяют и свою величину, и направление действия.


Федерация производителей кофе Колумбии
Расчет рамы на динамическое действие нагрузки