Примеры решения задач типового расчета

Определение. Матрицей из m строк, n столбцов назыается прямоугольная таблица чисел ; - элемент матрицы; i-номер строки; i=1,…,m; j-номер столбца, j=1,…,n; m, n – порядки матрицы. При m=n - квадратная матрица.

Определение. Определителем n-го порядка, соответствующим матрице , называется число .

Для вычисления определителя можно использовать элементы произвольной строки или столбца.

Определение. Алгебраическим дополнение   элемента  называется число, равное .

Определение. Дополнительным минором элемента  матрицы  называется определитель матрицы n-1-го порядка, полученный из матрицы  вычеркиванием i-ой строки и j-го столбца.

  .

Транспонирование матрицы – такое преобразование матрицы, при котором строки становятся столбцами с сохранением порядка следования.

Свойства определителей.

1.        При транспонировании матрицы определитель не меняется.

4

2.        При перестановке любых двух строк (столбцов) определитель меняет только знак.

3.        При умножении строки (столбца) на некоторое число определитель умножается на это число. 

4.        Если все соответствующие элементы квадратных матриц одного порядка одинаковы, за исключением элементов одной i-ой строки, то .

5.        Величина определителя не изменяется, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженной на некоторое число.

Определитель равен нулю, если

- все элементы некоторой строки (столбца) равны нулю.

 - две строки (столбца) одинаковы.

- две строки (столбца) определителя пропорциональны.

Методы вычисления определителей.

1). Разложение по строке или столбцу.

2). Метод обращения в нуль всех, кроме одного, элементов строки или столбца. Метод состоит в том, что с учетом свойств определителя при помощи какого-либо столбца (строки) путём умножения его на соответствующие числа и вычитания из остальных столбцов (строк), зануляются все элементы выбранной строки (столбца) кроме одного, принадлежащего вычитаемому столбцу (строке). 

3). Метод приведения к треугольному виду. Алгоритм, предложенный в предыдущем пункте, используется для последовательного зануления всех элементов первой строки (столбца) кроме одного, второй строки (столбца) – всех кроме двух и т.д. В итоге определитель преобразуется к треугольному виду. Величина такого определителя равна произведению элементов главной диогонали.

4). Вычисление с использованием теоремы Лапласа, согласно которой определитель - го порядка равен сумме произведений всех его миноров -го порядка, стоящих в выделенных строках (столбцах), на их алгебраические дополнения.

Примеры

1. Вычислить данный определитель четвёртого порядка с помощью разложения по строке или столбцу: 

 

5

 

  Решение. Удобнее всего делать разложение по строке или столбцу, в которых встречается наибольшее число нулевых элементов. В данном случае – это четвёртый столбец. Итак имеем


  Полученные в итоге два определителя третьего порядка вычислим тем же методом. В определителе  нулевых элементов нет, поэтому можно выбрать для разложения любой из столбцов, например, первый. В  единственный нулевой элемент находится на пересечении первого столбца со второй строкой. Для разнообразия будем разлагать  по второй строке:

 

 

6

 

 

Таким образом окончательно получим

 

2.  Используя метод обращения в нуль всех, кроме одного, элементов строки или столбца вычислить определитель матрицы

 

Решение. Будем занулять все, кроме первого, элементы первой строки. С этой целью вычтем из второго, третьего и четвёртого столбцов первый столбец, умноженный соответственно на 2, 3 и 4. Получим

 

7

Представленный в таком виде определитель разложим по первой строке:

 

Определитель третьего порядка, к которому свёлся исходный определитель, будем вычислять тем же способом. Вычтем из второго и третьего столбцов первый столбец, умноженный соответственно на 2 и 7. Получим (попутно вынося общие множители из столбцов)


 

3. Используя метод приведения к треугольному виду вычислить определитель из примера 2.

Решение. Воспользуемся видом определителя , который получился после процедуры зануления всех элементов (кроме первого) первой строки:

   .

Далее с помощью второго столбца занулим элементы второй строки, кроме первых двух, для чего вычтем из третьего и четвёртого столбцов второй столбец, умноженный соответственно на 2 и 7. Получим (попутно вынося общие множители из столбцов)

 

 

 

8

Наконец, вычтем третий столбец из четвёртого, в результате чего определитель сведётся к треугольному виду, величина которого равна произведению элементов главной

 

диогонали:  .


Эротический массаж от шлюхи с сервиса http://prostitutkivoronezha24.info/types-services/eroticheskij-massazh/ зажжет в вас огонь страсти. | Похотливые кошечки http://prostitutkinizhnegonovgoroda24.info/types-services/zolotoj-dozhd-priem/ обожают принимать золотой дождь.