Примеры решения задач типового расчета

Рассмотрим тело, занимающее пространственную область  (рис. 1), и предположим, что плотность распределения массы в этом теле является непрерывной функцией координат точек тела:

 

Единица измерения плотности - кг/м3.

  Рис. 1.

Разобьем тело произволь­ным образом на n частей; объемы этих частей обозначим  Выберем затем в каждой части по про­извольной точке  Полагая, что в, каждой час­тичной области плотность по­стоянна и равна ее значению в точке , мы получим при­ближенное выражение для массы всего тела в виде суммы 

 (*)

Предел этой суммы при ус­ловии, что  и каждое частичное тело стягивается в точку (т. е. что его диаметр ) стремится к нулю), и даст массу М тела

Сумма (*) называется n-й интегральной суммой, а ее предел - тройным интегралом от функции  по пространственной области .

К вычислению тройного интеграла, помимо определения массы тела, приводят и другие задачи. Поэтому в дальнейшем мы будем рассматривать тройной интеграл

где  - произвольная непрерывная в области функция.

Терминология для тройных интегралов совпадает с соответствую­щей терминологией для двойных интегралов. Точно так же формули­руется и теорема существования тройного интеграла .

Свойства двойных интегралов, полностью переносятся на тройные интегралы. Заметим только, что если подын­тегральная функция  тождественно равна 1, то тройной интеграл выражает объем V области :

 

Потому свойства V и VI надо теперь сформулировать следующим образом.

V 1. Если функция  во всех точках области интегри­рования  удовлетворяет неравенствам

то

где V - объем области .

VI 1. Тройной интеграл равен произведению значения подын­тегральной функции в некоторой точке области интегрирования на объем области интегрирования, т. е.