Примеры решения задач по электротехнике, физике

Живопись
Практика

Аварии

Черчение
Дифуры

Пример 15. Альфа-частица прошла ускоряющую разность потенциалов U=104 В и влетела в скрещенные под прямым углом электрическое (E=10 кВ/м) и магнитное (B=0,1 Тл) поля. Найти отношение заряда альфа-частицы к ее массе, если, двигаясь перпендикулярно обоим полям, частица не испытывает отклонений от прямолинейной траектории.

Решение. Для того чтобы найти отношение заряда Q альфа-частицы к ее массе m, воспользуемся связью между работой сил электрического поля и изменением кинетической энергии частиц:

QU=mu2/2,

откуда 

Q/m=u2/(2U). (1)

Скорость u альфа-частицы найдем из следующих соображений. В скрещенных электрическом и магнитном полях на движущуюся заряженную частицу действуют две силы:

а) сила Лоренца Fл=Q[vВ], направленная перпендикулярно скорости v и вектору магнитной индукции В;

б) кулоновская сила FK=QE, сонаправленная с вектором напряженности Е электростатического поля (Q>0).

Сделаем рисунок с изображением координатных осей и векторных

величин. Направим вектор магнитной индукции В вдоль оси Оz (рис. 14), скорость v—в положительном направлении оси Ох, тогда Fл и Fk будут направлены так, как это указано на ри­сунке.

Альфа-частица не будет испытывать отклонения, если геометри­ческая сумма сил Fл+Fk будет равна нулю. В проекции на ось

Рис. 14

Оу получим следующее равенство (при этом учтено, что вектор ско­рости v перпендикулярен вектору магнитной индукции В и sin (vÙB)=l):

QE—QuB = O,

откуда

u =E/B.

Подставив это выражение скорости в формулу (1), получим

Q/m=E2( 2UB2).

Убедимся в том, что правая часть равенства дает единицу отно­шения заряда к массе (Кл/кг):

Произведем вычисления:

Пример 16. В одной плоскости с бесконечно длинным прямым проводом, по которому течет ток I=50 А, расположена прямоуголь­ная рамка так, что две большие стороны ее длиной l=65 см парал­лельны проводу, а расстояние от провода до ближайшей из этих сторон равно ее ширине. Каков магнитный поток Ф, пронизываю­щий рамку?

Решение. Магнитный поток Ф через поверхность площадью S определяется выражением

  Рис. 15

В нашем случае вектор магнитной индукции В перпендикулярен плоскости рамки. Поэтому для всех точек рамки Вn=В. Магнитная индукция В, создаваемая бесконечно длинным прямым проводником с током, определяется формулой

,

где x— расстояние от провода до точки, в которой определяется В.

Для вычисления магнитного потока заметим, что так как В зависит от х и элементарный поток Ф будет также за­висеть от х, то

dФ=B(x)dS.

Разобьем площадь рамки на узкие элементарные площадки длиной l, шири­ной dx и площадью dS=ldx (рис. 15). В пределах этой площадки магнитную индукцию можно считать постоянной, так как все части площад­ки равноудалены (на расстояние х) от провода. С учетом сделанных замечаний элементарный магнитный поток можно записать в виде

dФ=

Проинтегрировав полученное выражение в пределах от x1=a до х2=2а, найдем

|p2p.

Подставив пределы, получим

  Убедимся в том, что правая часть полученного равенства дает единицу магнитного потока (Вб): [m0] [I] [l]= Гн/м ×1 А ×1 м=1 Вб. Произведя вычисления по формуле (1), найдем Ф=4,5 мкВб.

Пример 17. Определить индукцию В и напряженность Н магнит­ного поля на оси тороида без сердечника, по обмотке которого, со­держащей N=200 витков, идет ток I=5 А. Внешний диаметр d1 тороида равен 30 см, внутренний d2= 20 см.

Решение. Для определения напряженности магнитного поля внутри тороида вычислим циркуляцию вектора Н вдоль линии маг­нитной индукции поля:

Из условия симметрии следует, что линии магнитной индукции тороида представляют собой окружности и что во всех точках этой линии напряженности одинаковы. Поэтому в выражении циркуля­ции напряженность Н можно вынести за знак интеграла, а интегри­рование проводить в пределах от нуля до 2 pr, где r — радиус ок­ружности, совпадающей с линией индукции, вдоль которой вычис­ляется циркуляция,

  (1)

С другой стороны, в соответствии с законом полного тока цир­куляция вектора напряженности магнитного поля равна сумме то­ков, охватываемых контуром, вдоль которого вычисляется цирку­ляция:

  (2)

Приравняв правые части равенств (1) и (2), получим

  (3) 

Линия, проходящая вдоль тороида, охватывает число токов, равное числу витков тороида. Сила тока во всех витках одинакова. Поэтому формула (3) примет вид 2prH=-NI, откуда

  (4) 

Для средней линии тороида r=1/2(R1R2)=1/4(d1+d2). Подставив это выражение r в формулу (4), найдем

  (5)

Магнитная индукция В0 в вакууме связана с напряженностью поля соотношением B0=m0H. Следовательно,

  (6)

Подставив значения величин в выражения (5) и (6), получим:

H=1,37 кА/м, B0=1,6 мТл.

Ядерная физика