Примеры решения задач по электротехнике, физике

Живопись
Практика

Аварии

Черчение
Дифуры

ЭЛЕКТРОМАГНЕТИЗМ

Пример 7. По двум параллельным прямым проводам длиной l=2,5 м каждый, находящимся на расстоянии d=20 см друг от дру­га, текут одинаковые токи I=1 кА. Вычислить силу F взаимодействия токов.

Решение. Взаимодействие двух проводников, по которым текут токи, осуществляется через магнитное поле. Каждый ток соз­дает магнитное поле, которое действует на другой проводник. Предположим, что оба тока (обозначим их 1г и I2) текут в одном направ­лении.

Вычислим силу F1,2, с которой магнитное поле, созданное током I1, действует на проводник с током I2. Для этого проведем магнит­ную силовую линию так (штриховая линия на рис. 10), чтобы она касалась проводника с током I2. По касательной к силовой линии проведем вектор магнитной индукции В1. Модуль магнитной индук­ции B1 определяется соотношением

 (1)

Согласно закону Ампера, на каждый элемент второго проводника с током I2 длиной dl2 действует в магнитном поле сила

Так как отрезок dl перпендикулярен вектору B1, то

и тогда

 (2)

Подставив в выражение (2) В1 из (1), получим

Рис. 10

Силу F1,2 взаимодействия проводников с током найдем интегрированием по всей длине второго проводника;

Заметив, что I1=I2=I и l2=l, получим

Убедимся в том, что правая часть этого равенства дает единицу силы

 

Произведем вычисления:

 

Сила F1,2 сонаправлена с силой dF1,2 (рис. 10) и определяется (в данном случае это проще) правилом левой руки.

Пример 8. Провод в виде тонкого полукольца радиусом R=10 см находится в однородном магнитном поле (B=50 мТл). По проводу течет ток I=10 А. Найти силу F, действующую на провод, если плоскость полукольца перпендикулярна линиям магнитной индукции, а подводя­щие провода находятся вне поля.

Решение. Распо­ложим провод в плоско­сти чертежа перпенди­кулярно линиям маг­нитной индукции (рис. 11) и выделим на нем малый элемент dl с то­ком.

 

Рис. 11

На этот элемент тока Idl будет действо­вать по закону Ампера сила dF=I[dlB]. Направление этой силы можно определить по правилу векторного произведения или по правилу левой руки.

Используя симметрию, выберем координатные оси так, как это изображено на рис. 11. Силу dF представим в виде

где i и j — единичные векторы (орты); dFx и dFy — проекции векто­ра dF на координатные оси Ох и Оу.

Силу F, действующую на весь провод, найдем интегрированием:

где символ L указывает на то, что интегрирование ведется по всей длине провода L.

Из  соображений симметрии первый интеграл равен нулю

тогда

  (1) 

Из рис. 11 следует, что

где dF — модуль вектора Так как вектор dl перпендикулярен вектору то  Вы­разив длину дуги dl через радиус R и угол α, получим

 Тогда 

Введем dFy под интеграл соотношения (1) и проинтегрируем в пре­делах от -π/2 до +π/2 (как это следует из рис. 11):

Из полученного выражения видно, что сила F сонаправлена с положительным направлением оси Оу (единичным вектором j).

Найдем модуль силы F:

Убедимся в том, что правая часть этого равенства дает единицу силы (Н):

Произведем  вычисления:

Пример 9. На проволочный виток радиусом г=10 см, помещен­ный между полюсами магнита, действует максимальный механиче­ский момент Мmax=6,5 мкН. Сила тока I в витке равна 2А. Опреде­лить магнитную индукцию В поля между полюсами магнита. Дей­ствием магнитного поля Земли пренебречь.

Решение. Индукцию В магнитного поля можно определить из выражения механического момента, действующего на виток с то­ком в магнитном поле,

 (1)

Если учесть, что максимальное значение механический момент принимает при α=π/2(sin α=l), а также что pm=IS, то формула (1) примет вид

Отсюда, учитывая, что S=πr2, находим

  (2)

Произведя вычисления по формуле (2), найдем

 В=104 мкТл.

Ядерная физика