Лабораторные работы по физики

Изучение движения тела по окружности под действием сил упругости и тяжести
Изучение закона сохранения механической энергии
Наблюдение зависимости скорости диффузии в жидкости от температуры
Проверка изотермического процесса
Определение относительной влажности воздуха
Определение мощности лампочки накаливания
Наблюдение и анализ явления электромагнитной индукции
Определение показателя преломления стекла
Наблюдение и объяснение полного отражения света
Определение световой волны света с помощью дифракционной решетки
 

ЛАБОРАТОРНАЯ РАБОТА № 4

ИССЛЕДОВАНИЕ ЭЛЕКТРОСТАТИЧЕСКИХ ПОЛЕЙ

Цель работы: ознакомиться с методом моделирования электростатического поля с помощью электропроводной бумаги; исследовать электростатическое поле плоского и цилиндрического конденсаторов.

Приборы и принадлежности: источник постоянного тока, вольтметр, электропроводная бумага, планшет с набором электродов, проводники, один из которых снабжен зондом.

Сведения из теории

Электростатическое  поле (ЭСП) - форма материи, осуществляющая взаимодействие между заряженными телами.

Основным свойством поля является его силовое действие на любой заряд, помещенный в поле.

Источником ЭСП является неподвижный заряд (заряженное тело).

Количественными характеристиками ЭСП являются напряженность и потенциал.

Напряженность поля - векторная физическая величина, характеризующая силовое действие поля в точке, численно равная силе, с которой поле действовало бы на положительный единичный заряд, помещенный в данную точку поля и по направлению совпадающая с направлением действия этой силы.

, (4.1)

здесь - сила, действующая на заряд + q, помещенный в данную точку поля.

Таким образом, напряженность - это силовая характеристика поля. Единица напряженности - Н/Кл (В/м). Если напряженность поля во всех точках одинакова по величине и направлению, то поле называют однородным, в противном случае - неоднородным.

Потенциал поля в точке - это скалярная физическая величина, характеризующая энергетические свойства поля, численно равная потенциальной энергии положительного единичного заряда, помещенного в данную точку поля.

 , (4.2)

здесь Wп - потенциальная энергия заряда +q, помещенного в некоторую точку поля. Единицей потенциала является В (Дж/Кл). Потенциал - энергетическая характеристика поля.

Потенциальная энергия, а вместе с ней и потенциал задаются с точностью до постоянной. Чтобы потенциал приобрел вполне определенное значение, надо придать ему некоторое значение в одной из точек поля. В физике принято считать j = 0 в точке, удаленной бесконечно далеко от заряженного тела.

Надо, однако, помнить, что хотя для любой точки поля можно указать такую величину, как потенциал, ясный физический смысл имеет только разность потенциалов двух точек поля (j1 - j2): она равна работе поля по перемещению единицы положительного заряда из одной точки (1) в другую (2). Измерить практически можно тоже только разность потенциалов. И, говоря об измерении потенциала, подразумевают измерение разности потенциалов двух точек, потенциал одной из которых условно принимается за нуль.

Из определения разности потенциалов двух точек поля следует, что работа поля по перемещению заряда +q из точки 1 в точку 2 может быть вычислена по формуле

 А = q (j1 - j2) . (4.3)

Электростатическое поле можно изобразить графически. Делается это с помощью линий напряженности (силовых линий) и эквипотенциальных поверхностей.

Линией напряженности называется линия, касательная к которой в каждой точке совпадает с направлением напряженности поля в этой точке (рис. 4.1 - сплошные кривые).

Рис. 4.1

Эквипотенциальная поверхность - поверхность равного потенциала (на рис. 4.1 пунктирные линии - линии пересечения этих поверхностей с плоскостью рисунка).

Так как работа поля по перемещению заряда вдоль эквипотенциальной поверхности равна нулю (j1 = j2), то это значит, что линии напряженности в любой точке поля перпендикулярны эквипотенциальным поверхностям.

Напряженность и разность потенциалов поля связаны между собой.  В общем случае эта связь выглядит так:

  или  . (4.4)

Здесь производная по расстоянию берется вдоль линии напряженности в направлении, совпадающем с направлением единичного вектора нормали n к эквипотенциальной поверхности. Из уравнений (4.4) видно, что вектор E всегда направлен в сторону уменьшения потенциала.

В случае однородного поля модуль вектора напряженности связан с разностью потенциалов соотношением:

, (4.5)

где jА и j В - потенциалы двух точек (А и В), лежащих на одной линии напряженности, а d - расстояние между этими точками.

Таким образом, зная закон изменения потенциала вдоль силовой линии, можно в любой точке поля определить напряженность поля, численное значение которой равно изменению потенциала на единице длины силовой линии. Отсюда следует еще одна единица измерения напряженности - B/м.

Моделирование электрического поля и описание установки

  Исследовать ЭСП, созданное зарядами в вакууме или в воздухе, сложно (нужны специальные приборы). Поэтому чаще всего для изучения поля зарядов используют его модель - поле токов в слабо проводящей среде (в нашем случае - в электропроводной бумаге), которое, как и поле зарядов, является потенциальным. При этом силовым линиям ЭСП соответствуют так называемые линии тока (линии, касательные к которым в каждой точке совпадают с направлением вектора плотности тока в этой точке), а поверхности равного потенциала этих полей просто совпадают. Сами потенциалы могут быть измерены обычным вольтметром, снабженным проводником с зондом - изолированным металлическим стержнем с заостренным концом. 

На рис. 4.2 представлены внешний вид и электрическая схема установки. Здесь 1 - планшет, на который укладывается электропроводная бумага 4, к которой, в свою очередь, прижимаются электроды 2. На эти

 электроды от источника постоянного тока 3 подается разность потенциалов, создающая электростатическое поле (и электрический ток на поверхности бумаги). С помощью зонда 5 и вольтметра  6 легко измерить потенциал в любой точке поля: для этого достаточно коснуться зондом той или иной точки бумаги.

В данной работе перед студентом стоят следующие задачи:

1) опытным путем найти эквипотенциальные поверхности для полей плоского и цилиндрического конденсаторов;

Рис. 4.2

2) на бумаге для указанных выше полей провести эквипотенциальные линии и линии напряженности;

3) вычислить величину напряженности поля плоского конденсатора; построить график зависимости потенциала от расстояния.

Порядок выполнения работы

1. Путем осмотра познакомиться с приборами и принадлежностями. Установить предел измерения вольтметра, определить “цену” деления прибора.

2. Закрепить оба листа электропроводной бумаги на планшете темной графитовой стороной вверх, плотно прижав к ним обе пары металлических электродов. Контуры электродов обвести.

3. На прямолинейных электродах собрать электрическую цепь (см. рис.4.2) и после проверки подключить к источнику постоянного тока.

С помощью зонда проверить: на который из электродов подан более высокий потенциал (желательно “минус” - на левый). На бумаге пометить электроды знаками “+” и “-”.

5. Экспериментально найти 5-6 групп точек поля, каждая из которых (групп) имеет одинаковый потенциал. Начните с точек, лежащих на расстоянии 5-10 мм от “-” электрода. В каждой группе взять по 8-10 точек, в том числе во внешней для конденсатора области. Точки на бумаге отмечают прижатием зонда к бумаге. Показания вольтметра для каждой из групп (j1, j2, j3, ...) занести в табл. 1.

6. Перенести электрическую цепь на цилиндрические электроды. Подключить источник тока, установить полярность электродов и найти 2-3 группы точек с одинаковыми потенциалами, значения которых записать прямо на бумаге. Источник поля отключить, цепь разобрать.

7. Оба листа бумаги снять. Повернуть (хотя и не обязательно) светлой стороной вверх. Отметить положение электродов, поставив знаки “+” и “-”. Точки с одинаковыми потенциалами соединить. Это и есть эквипотенциальные линии. На том и другом листе провести (по всему полю) по 7-10 линий напряженности, указав их направление.

8. Вычислить напряженность поля плоского конденсатора и построить график Dji1 = f (Dri1):

а) вычислить разность потенциалов Dj21 = j2-j1, Dj31 = j3-j1,... ;

б) по одной из линий напряженности (в средней части поля) измерить расстояния Dr21, Dr31, ... ; все результаты занести в табл. 1;

Таблица 1

Номер эквип.

линии

ji, В

Dji1, В

Dri1,10-3

м

Еi =

Dji1Dri1,10-3

В×м

Dri12,

10-6 м2

Е, d%

1

2

3

.

.

.

d= DЕ/Е´

100%

  Е =

Сумма

Средн. значен.

в) по формуле (4.5), по данным п.п. “а”,“б” вычислить значения напряженностей исследуемого поля и по ним среднее значение <Е>;

г) заполнить другие графы таблицы, т. е. вычислить Dji1×Dri1, Dri2, а также S Dji1×Dri1 и SDri2; 

д) вычислить напряженность поля по формуле, следующей из метода наименьших квадратов:

;  (4.6)

е) сравнить результаты п.п. “в” и “д”. Найти расхождение в процентах между <E> и E, т. е. расхождение одной и той же величины, найденной разными способами;

ж) начертить график зависимости разности потенциалов (потенциала) от расстояния Dji1 = f (Drr1).  Сделать соответствующий вывод.

9. Рабочее место привести в порядок и сдать лаборанту.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое ЭСП? В чем состоит его основное свойство?

2. Какими величинами характеризуют ЭСП?

3. Что называют напряженностью поля? Единицы ее измерения.

4. Что называется потенциалом данной точки поля? Единицы его измерения.

5. Каков физический смысл разности потенциалов двух точек поля?

6. Какова связь между напряженностью и потенциалом поля, между напряженностью и разностью потенциалов?

7. Как графически изображается ЭСП?

8.Что такое линии напряженности и эквипотенциальные поверхности поля? Каково их взаимное расположение (при изображении поля)?

Как моделировалось ЭСП в данной работе? Опишите установку.

Ремонт принтеров Epson по материалам сайта.